skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guan, Jiaxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Everlasting (EL) privacy offers an attractive solution to the Store-Now-Decrypt-Later (SNDL) problem, where future increases in the attacker's capability could break systems which are believed to be secure today. Instead of requiring full information-theoretic security, everlasting privacy allows computationally-secure transmissions of ephemeral secrets, which are only effective for a limited periods of time, after which their compromise is provably useless for the SNDL attacker. In this work we revisit such everlasting privacy model of Dodis and Yeo (ITC'21), which we call Hypervisor EverLasting Privacy (HELP). HELP is a novel architecture for generating shared randomness using a network of semi-trusted servers (or hypervisors), trading the need to store/distribute large shared secrets with the assumptions that it is hard to: (a) simultaneously compromise too many publicly accessible ad-hoc servers; and (b) break a computationally-secure encryption scheme very quickly. While Dodis and Yeo presented good HELP solutions in the asymptotic sense, their solutions were concretely expensive and used heavy tools (like large finite fields or gigantic Toeplitz matrices). We abstract and generalize the HELP architecture to allow for more efficient instantiations, and construct several concretely efficient HELP solutions. Our solutions use elementary cryptographic operations, such as hashing and message authentication. We also prove a very strong composition theorem showing that our EL architecture can use any message transmission method which is computationally-secure in the Universal Composability (UC) framework. This is the first positive composition result for everlasting privacy, which was otherwise known to suffer from many non-composition results (Müller-Quade and Unruh; J of Cryptology'10). 
    more » « less